cs.AI updates on arXiv.org 11月12日 13:18
高效图对比学习框架提升GNN性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种高效图对比学习框架,通过将输入图转化为紧凑的网络结构,同时保留社区间的结构信息,以解决大规模图上的可扩展性问题。通过引入核化图社区对比损失和知识蒸馏技术,该框架在多个真实世界数据集上展现出优越的性能。

arXiv:2511.08287v1 Announce Type: cross Abstract: Graph Contrastive Learning (GCL) has emerged as a powerful paradigm for training Graph Neural Networks (GNNs) in the absence of task-specific labels. However, its scalability on large-scale graphs is hindered by the intensive message passing mechanism of GNN and the quadratic computational complexity of contrastive loss over positive and negative node pairs. To address these issues, we propose an efficient GCL framework that transforms the input graph into a compact network of interconnected node sets while preserving structural information across communities. We firstly introduce a kernelized graph community contrastive loss with linear complexity, enabling effective information transfer among node sets to capture hierarchical structural information of the graph. We then incorporate a knowledge distillation technique into the decoupled GNN architecture to accelerate inference while maintaining strong generalization performance. Extensive experiments on sixteen real-world datasets of varying scales demonstrate that our method outperforms state-of-the-art GCL baselines in both effectiveness and scalability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图对比学习 GNN 知识蒸馏 图神经网络 大规模图
相关文章