cs.AI updates on arXiv.org 11月12日 13:17
ProbSelect:GPU加速设备联邦学习中的客户端选择新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ProbSelect,一种基于分析建模和概率预测的GPU加速设备客户端选择新方法,无需历史数据或持续监控,在多样化的GPU架构和工作负载中,平均提高SLO合规性13.77%,相比基线方法减少72.5%的计算浪费。

arXiv:2511.08147v1 Announce Type: cross Abstract: Integration of edge, cloud and space devices into a unified 3D continuum imposes significant challenges for client selection in federated learning systems. Traditional approaches rely on continuous monitoring and historical data collection, which becomes impractical in dynamic environments where satellites and mobile devices frequently change operational conditions. Furthermore, existing solutions primarily consider CPU-based computation, failing to capture complex characteristics of GPU-accelerated training that is prevalent across the 3D continuum. This paper introduces ProbSelect, a novel approach utilizing analytical modeling and probabilistic forecasting for client selection on GPU-accelerated devices, without requiring historical data or continuous monitoring. We model client selection within user-defined SLOs. Extensive evaluation across diverse GPU architectures and workloads demonstrates that ProbSelect improves SLO compliance by 13.77% on average while achieving 72.5% computational waste reduction compared to baseline approaches.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 客户端选择 GPU加速
相关文章