cs.AI updates on arXiv.org 11月12日 13:16
AI模型长期可持续性评估新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种评估机器学习模型长期可持续性的综合方法,适用于批处理和流学习场景,并通过实验证明传统评估方法在数据演变和模型更新下的局限性。

arXiv:2511.08120v1 Announce Type: cross Abstract: Sustainability and efficiency have become essential considerations in the development and deployment of Artificial Intelligence systems, yet existing regulatory and reporting practices lack standardized, model-agnostic evaluation protocols. Current assessments often measure only short-term experimental resource usage and disproportionately emphasize batch learning settings, failing to reflect real-world, long-term AI lifecycles. In this work, we propose a comprehensive evaluation protocol for assessing the long-term sustainability of ML models, applicable to both batch and streaming learning scenarios. Through experiments on diverse classification tasks using a range of model types, we demonstrate that traditional static train-test evaluations do not reliably capture sustainability under evolving data and repeated model updates. Our results show that long-term sustainability varies significantly across models, and in many cases, higher environmental cost yields little performance benefit.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI模型 可持续性评估 机器学习
相关文章