cs.AI updates on arXiv.org 11月12日 13:12
社交互动提升众包数据可信度
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨如何通过社交互动提升社交网络中众包数据可信度,通过AI分析社交互动图结构,检测不合规参与,实现高精度数据筛选。

arXiv:2511.07593v1 Announce Type: cross Abstract: The emergence of crowdsourced data has significantly reshaped social science, enabling extensive exploration of collective human actions, viewpoints, and societal dynamics. However, ensuring safe, fair, and reliable participation remains a persistent challenge. Traditional polling methods have seen a notable decline in engagement over recent decades, raising concerns about the credibility of collected data. Meanwhile, social and peer-to-peer networks have become increasingly widespread, but data from these platforms can suffer from credibility issues due to fraudulent or ineligible participation. In this paper, we explore how social interactions can help restore credibility in crowdsourced data collected over social networks. We present an empirical study to detect ineligible participation in a polling task through AI-based graph analysis of social interactions among imperfect participants composed of honest and dishonest actors. Our approach focuses solely on the structure of social interaction graphs, without relying on the content being shared. We simulate different levels and types of dishonest behavior among participants who attempt to propagate the task within their social networks. We conduct experiments on real-world social network datasets, using different eligibility criteria and modeling diverse participation patterns. Although structural differences in social interaction graphs introduce some performance variability, our study achieves promising results in detecting ineligibility across diverse social and behavioral profiles, with accuracy exceeding 90% in some configurations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

众包数据 社交互动 数据可信度 AI分析 社交网络
相关文章