cs.AI updates on arXiv.org 11月07日 13:53
LLM响应质量与用户特质关系研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究大型语言模型(LLM)在信息准确性、真实性及拒绝回复方面的表现,并分析其与用户英语水平、教育程度及国籍之间的关系。实验结果表明,LLM的不当行为在英语水平较低、教育程度较低及非美国用户中更为普遍,使其对最脆弱用户的信息来源可靠性降低。

arXiv:2406.17737v2 Announce Type: replace-cross Abstract: While state-of-the-art large language models (LLMs) have shown impressive performance on many tasks, there has been extensive research on undesirable model behavior such as hallucinations and bias. In this work, we investigate how the quality of LLM responses changes in terms of information accuracy, truthfulness, and refusals depending on three user traits: English proficiency, education level, and country of origin. We present extensive experimentation on three state-of-the-art LLMs and two different datasets targeting truthfulness and factuality. Our findings suggest that undesirable behaviors in state-of-the-art LLMs occur disproportionately more for users with lower English proficiency, of lower education status, and originating from outside the US, rendering these models unreliable sources of information towards their most vulnerable users.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 用户特质 信息准确性 真实性 模型行为
相关文章