cs.AI updates on arXiv.org 11月07日 13:50
订阅平台反欺诈机制研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了基于订阅制的平台反欺诈机制,分析了现有机器学习方法的局限性,提出了新的反欺诈规则,并通过实验验证了其有效性。

arXiv:2511.04465v1 Announce Type: cross Abstract: We study a model of subscription-based platforms where users pay a fixed fee for unlimited access to content, and creators receive a share of the revenue. Existing approaches to detecting fraud predominantly rely on machine learning methods, engaging in an ongoing arms race with bad actors. We explore revenue division mechanisms that inherently disincentivize manipulation. We formalize three types of manipulation-resistance axioms and examine which existing rules satisfy these. We show that a mechanism widely used by streaming platforms, not only fails to prevent fraud, but also makes detecting manipulation computationally intractable. We also introduce a novel rule, ScaledUserProp, that satisfies all three manipulation-resistance axioms. Finally, experiments with both real-world and synthetic streaming data support ScaledUserProp as a fairer alternative compared to existing rules.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

订阅平台 反欺诈 机器学习 规则设计 实验验证
相关文章