cs.AI updates on arXiv.org 11月07日 13:45
新型深度神经网络模型选择能力研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新型深度卷积神经网络方法,通过独特自由度的响应及其类别信息训练和验证一维卷积神经网络,实现无需系统输入信息或全系统识别的新信号模型类别选择。同时,通过卡尔曼滤波结合动力学约束,增强了基于物理算法的信号融合,对线性、非线性动态系统和3D建筑有限元模型进行模型类别选择,为结构健康监测提供有力工具。

arXiv:2511.03743v1 Announce Type: cross Abstract: The response-only model class selection capability of a novel deep convolutional neural network method is examined herein in a simple, yet effective, manner. Specifically, the responses from a unique degree of freedom along with their class information train and validate a one-dimensional convolutional neural network. In doing so, the network selects the model class of new and unlabeled signals without the need of the system input information, or full system identification. An optional physics-based algorithm enhancement is also examined using the Kalman filter to fuse the system response signals using the kinematics constraints of the acceleration and displacement data. Importantly, the method is shown to select the model class in slight signal variations attributed to the damping behavior or hysteresis behavior on both linear and nonlinear dynamic systems, as well as on a 3D building finite element model, providing a powerful tool for structural health monitoring applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度神经网络 模型选择 结构健康监测 卡尔曼滤波 动力学约束
相关文章