Google AI News 6小时前
Gemini API 推出文件搜索工具,简化 RAG 系统集成
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Google Gemini API 现已集成文件搜索工具,这是一个完全托管的检索增强生成(RAG)系统。该工具简化了 RAG 的复杂性,用户无需自行管理检索管道,即可将 Gemini 模型与自有数据相结合,生成更准确、更相关且可验证的回答。文件搜索工具的存储和查询时嵌入生成均免费,仅在首次索引文件时收取一次性嵌入生成费用,成本效益显著。它提供简单集成的开发者体验,自动处理文件存储、分块、嵌入和上下文注入,并支持多种文件格式,还能在模型回复中自动引用来源,方便验证。

🗂️ **集成 RAG 系统简化开发:** 文件搜索工具作为 Gemini API 的一部分,提供了一个完全托管的 RAG 系统,消除了开发者自行构建和管理检索管道的复杂性,让他们能专注于应用开发。

💰 **免费存储与查询嵌入,降低成本:** 该工具提供免费的文件存储和查询时嵌入生成服务,用户仅需在首次索引文件时支付一次性嵌入生成费用,显著降低了使用成本,使其更易于开发和扩展。

🚀 **无缝集成与强大功能:** 文件搜索工具无缝集成到现有的 `generateContent` API 中,自动处理文件存储、最优分块策略、嵌入生成以及将检索到的上下文动态注入提示。它利用先进的 Gemini 嵌入模型进行向量搜索,理解查询含义,并提供内置引用,简化验证过程。

📄 **广泛格式支持,灵活构建知识库:** 支持 PDF、DOCX、TXT、JSON 以及多种常见编程语言文件格式,允许用户构建全面的知识库,满足多样化的数据需求。

Today, we're launching the File Search Tool, a fully managed RAG system built directly into the Gemini API that abstracts away the retrieval pipeline so you can focus on building. File Search provides a simple, integrated and scalable way to ground Gemini with your data, delivering responses that are more accurate, relevant and verifiable.

To make File Search simple and affordable for all developers, we’re making storage and embedding generation at query time free of charge. You only pay for creating embeddings when you first index your files, at a fixed rate of $0.15 per 1 million tokens (or whatever the applicable embedding model cost is, in this case gemini-embedding-001). This new billing paradigm makes the File Search Tool both significantly easier and very cost-effective to build and scale with.

How File Search works

File Search accelerates your development workflow by handling the complexities of RAG for you. It provides a user-friendly alternative to a self-managed setup.

  • Simple, integrated developer experience: We've streamlined the entire RAG process. File Search automatically manages file storage, optimal chunking strategies, embeddings and the dynamic injection of retrieved context into your prompts. It works within the existing `generateContent` API, making it easy to adopt.
  • Powerful vector search: Powered by our latest state-of-the-art Gemini Embedding model, File Search uses vector search to understand the meaning and context of a user's query. It can find relevant information from your documents, even if the exact words aren't used.
  • Built-in citations: The model’s responses automatically include citations that specify which parts of your documents were used to generate the answer, simplifying verification.
  • Support for a wide range of formats: You can build a comprehensive knowledge base using a vast array of file formats, including PDF, DOCX, TXT, JSON and many common programming language file types (see the full list of supported formats in the docs)

You can see the File Search Tool in action through one of our new demo app in Google AI Studio (needs a paid API key).

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Gemini API 文件搜索工具 RAG 人工智能 File Search Tool AI Retrieval-Augmented Generation
相关文章