cs.AI updates on arXiv.org 11月06日 13:22
隐私线性回归统计复杂性研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了隐私线性回归在未知、可能病态的协变量分布下的统计复杂性。在隐私约束下,内在复杂性并非由通常的协方差矩阵捕获,而是其$L_1$相似物。基于此,本文建立了中央和局部隐私模型的最小-最大收敛速率,并引入了一种信息加权回归方法,实现了最优速率。

arXiv:2502.13115v2 Announce Type: replace-cross Abstract: We study the statistical complexity of private linear regression under an unknown, potentially ill-conditioned covariate distribution. Somewhat surprisingly, under privacy constraints the intrinsic complexity is \emph{not} captured by the usual covariance matrix but rather its $L_1$ analogues. Building on this insight, we establish minimax convergence rates for both the central and local privacy models and introduce an Information-Weighted Regression method that attains the optimal rates. As application, in private linear contextual bandits, we propose an efficient algorithm that achieves rate-optimal regret bounds of order $\sqrt{T}+\frac{1}{\alpha}$ and $\sqrt{T}/\alpha$ under joint and local $\alpha$-privacy models, respectively. Notably, our results demonstrate that joint privacy comes at almost no additional cost, addressing the open problems posed by Azize and Basu (2024).

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

隐私线性回归 统计复杂性 信息加权回归
相关文章