cs.AI updates on arXiv.org 前天 13:16
可控局部性在Transformer语言模型中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文首次实证展示了在Transformer语言模型中实现可控局部性的方法,通过可调的局部性调节参数,允许在局部编码和分布式表示之间动态插值,无需模型重训练。实验结果表明,局部主义配置在降低注意力熵的同时,提高了指针的精确度,优化了可解释性和性能之间的权衡。

arXiv:2511.03559v1 Announce Type: cross Abstract: This paper presents the first empirical demonstration of controllable locality in transformer language models, a novel architectural framework that enables continuous control over the degree of representation localization through a tunable locality dial parameter. Unlike traditional language models that rely exclusively on distributed representations, our approach allows dynamic interpolation between highly interpretable localist encodings and efficient distributed representations without requiring model retraining. We conducted experiments on the WikiText corpus using a two-layer transformer architecture, systematically varying the locality parameter {\lambda} across the full spectrum from 1.0 (fully localist) to 0.0 (fully distributed). Our results demonstrate that localist configurations achieve dramatically lower attention entropy, with {\lambda} = 1.0 yielding 5.36 bits compared to 7.18 bits at {\lambda} = 0.0, while maintaining substantially higher pointer fidelity scores reflecting stronger alignment with rule-specified targets. Prediction experiments reveal that intermediate locality values optimize the tradeoff between interpretability and performance, with {\lambda} = 0.6 achieving test perplexity of 4.65 and accuracy of 84.7%. These findings establish that localist language models provide a practical framework for applications in regulated domains requiring both transparency and capability, offering precise mathematical control over the interpretability-performance spectrum through explicit penalty thresholds and information-theoretic design principles.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Transformer 语言模型 局部性 可解释性 性能
相关文章