cs.AI updates on arXiv.org 11月06日 13:10
EGMOF:高效MOF材料逆向设计新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出EGMOF,一种基于扩散-Transformer的混合框架,通过模块化、描述符介导的工作流程,实现高效MOF材料逆向设计。EGMOF在氢气吸附数据集上达到95%的有效性和84%的命中率,显著优于现有方法。

arXiv:2511.03122v1 Announce Type: cross Abstract: Designing materials with targeted properties remains challenging due to the vastness of chemical space and the scarcity of property-labeled data. While recent advances in generative models offer a promising way for inverse design, most approaches require large datasets and must be retrained for every new target property. Here, we introduce the EGMOF (Efficient Generation of MOFs), a hybrid diffusion-transformer framework that overcomes these limitations through a modular, descriptor-mediated workflow. EGMOF decomposes inverse design into two steps: (1) a one-dimensional diffusion model (Prop2Desc) that maps desired properties to chemically meaningful descriptors followed by (2) a transformer model (Desc2MOF) that generates structures from these descriptors. This modular hybrid design enables minimal retraining and maintains high accuracy even under small-data conditions. On a hydrogen uptake dataset, EGMOF achieved over 95% validity and 84% hit rate, representing significant improvements of up to 57% in validity and 14% in hit rate compared to existing methods, while remaining effective with only 1,000 training samples. Moreover, our model successfully performed conditional generation across 29 diverse property datasets, including CoREMOF, QMOF, and text-mined experimental datasets, whereas previous models have not. This work presents a data-efficient, generalizable approach to the inverse design of diverse MOFs and highlights the potential of modular inverse design workflows for broader materials discovery.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EGMOF MOF材料 逆向设计 扩散-Transformer 数据高效
相关文章