cs.AI updates on arXiv.org 11月06日 13:06
癫痫患者脑电信号预测框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本研究提出一种基于时空注意力网络的深度学习框架,通过学习脑电信号的时空相关性结构,实现癫痫患者癫痫发作的准确预测,显著优于现有方法,并提供足够的干预时间。

arXiv:2511.02846v1 Announce Type: cross Abstract: In this study, we present a deep learning framework that learns complex spatio-temporal correlation structures of EEG signals through a Spatio-Temporal Attention Network (STAN) for accurate predictions of onset of seizures for Epilepsy patients. Unlike existing methods, which rely on feature engineering and/or assume fixed preictal durations, our approach simultaneously models spatio-temporal correlations through STAN and employs an adversarial discriminator to distinguish preictal from interictal attention patterns, enabling patient-specific learning. Evaluation on CHB-MIT and MSSM datasets demonstrates 96.6\% sensitivity with 0.011/h false detection rate on CHB-MIT, and 94.2% sensitivity with 0.063/h FDR on MSSM, significantly outperforming state-of-the-art methods. The framework reliably detects preictal states at least 15 minutes before an onset, with patient-specific windows extending to 45 minutes, providing sufficient intervention time for clinical applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

癫痫预测 脑电信号 深度学习 时空注意力网络 癫痫发作
相关文章