cs.AI updates on arXiv.org 前天 13:32
联邦学习框架识别高风险学生
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出并验证了一种联邦学习框架,用于在保护数据隐私的前提下,主动识别有风险的学生。通过大规模OULAD数据集,模拟以隐私为中心的场景,对模型进行训练。研究探讨了模型复杂度(逻辑回归与深度神经网络)和本地数据平衡的影响。联邦学习模型实现了强预测能力(ROC AUC约85%),证明了其在尊重学生数据主权的前提下,对早期预警系统的实用性和可扩展性。

arXiv:2508.18316v2 Announce Type: replace-cross Abstract: This study proposes and validates a Federated Learning (FL) framework to proactively identify at-risk students while preserving data privacy. Persistently high dropout rates in distance education remain a pressing institutional challenge. Using the large-scale OULAD dataset, we simulate a privacy-centric scenario where models are trained on early academic performance and digital engagement patterns. Our work investigates the practical trade-offs between model complexity (Logistic Regression vs. a Deep Neural Network) and the impact of local data balancing. The resulting federated model achieves strong predictive power (ROC AUC approximately 85%), demonstrating that FL is a practical and scalable solution for early-warning systems that inherently respects student data sovereignty.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 学生识别 数据隐私 早期预警 模型复杂度
相关文章