cs.AI updates on arXiv.org 11月05日 13:31
数据蒸馏技术在图像超分辨率中的应用研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文首次系统地研究了数据蒸馏技术在图像超分辨率中的应用,通过实验证明了数据蒸馏技术在保持重建精度和模型效率方面的有效性。

arXiv:2502.03656v2 Announce Type: replace-cross Abstract: Dataset distillation aims to compress large datasets into compact yet highly informative subsets that preserve the training behavior of the original data. While this concept has gained traction in classification, its potential for image Super-Resolution (SR) remains largely untapped. In this work, we conduct the first systematic study of dataset distillation for SR, evaluating both pixel- and latent-space formulations. We show that a distilled dataset, occupying only 8.88% of the original size, can train SR models that retain nearly the same reconstruction fidelity as those trained on full datasets. Furthermore, we analyze how initialization strategies and distillation objectives affect efficiency, convergence, and visual quality. Our findings highlight the feasibility of SR dataset distillation and establish foundational insights for memory- and compute-efficient generative restoration models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据蒸馏 图像超分辨率 模型效率
相关文章