cs.AI updates on arXiv.org 前天 13:31
基于认知不确定性的AI图像检测新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用认知不确定性检测AI生成图像的新框架,通过识别训练和测试数据间的分布差异,将图像检测问题转化为不确定性估计问题,并利用预训练的大规模视觉模型提高检测效果。

arXiv:2412.05897v2 Announce Type: replace-cross Abstract: We introduce a novel framework for AI-generated image detection through epistemic uncertainty, aiming to address critical security concerns in the era of generative models. Our key insight stems from the observation that distributional discrepancies between training and testing data manifest distinctively in the epistemic uncertainty space of machine learning models. In this context, the distribution shift between natural and generated images leads to elevated epistemic uncertainty in models trained on natural images when evaluating generated ones. Hence, we exploit this phenomenon by using epistemic uncertainty as a proxy for detecting generated images. This converts the challenge of generated image detection into the problem of uncertainty estimation, underscoring the generalization performance of the model used for uncertainty estimation. Fortunately, advanced large-scale vision models pre-trained on extensive natural images have shown excellent generalization performance for various scenarios. Thus, we utilize these pre-trained models to estimate the epistemic uncertainty of images and flag those with high uncertainty as generated. Extensive experiments demonstrate the efficacy of our method. Code is available at https://github.com/tmlr-group/WePe.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

认知不确定性 AI图像检测 不确定性估计 预训练模型 视觉识别
相关文章