cs.AI updates on arXiv.org 15小时前
TaylorIR:超分辨率图像重建的Transformer架构创新
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为TaylorIR的超分辨率图像重建框架,通过TaylorShift机制提高了Transformer架构在图像重建中的性能,并显著降低了内存消耗。

arXiv:2411.10231v2 Announce Type: replace-cross Abstract: Transformer-based architectures have recently advanced the image reconstruction quality of super-resolution (SR) models. Yet, their scalability remains limited by quadratic attention costs and coarse patch embeddings that weaken pixel-level fidelity. We propose TaylorIR, a plug-and-play framework that enforces 1x1 patch embeddings for true pixel-wise reasoning and replaces conventional self-attention with TaylorShift, a Taylor-series-based attention mechanism enabling full token interactions with near-linear complexity. Across multiple SR benchmarks, TaylorIR delivers state-of-the-art performance while reducing memory consumption by up to 60%, effectively bridging the gap between fine-grained detail restoration and efficient transformer scaling.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

超分辨率图像 Transformer架构 TaylorShift
相关文章