cs.AI updates on arXiv.org 12小时前
对比研究:抑郁焦虑检测模型效果
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对比了传统机器学习、编码器模型和大型语言模型在俄语抑郁焦虑检测任务上的表现。研究发现,LLMs在噪声大、数据量小的数据集上表现优于传统方法,而在特定人群的文本数据上,编码器模型和语言模型性能相当,显示出其在临床应用中的潜力。

arXiv:2410.07129v3 Announce Type: replace-cross Abstract: This paper compares the effectiveness of traditional machine learning methods, encoder-based models, and large language models (LLMs) on the task of detecting depression and anxiety. Five Russian-language datasets were considered, each differing in format and in the method used to define the target pathology class. We tested AutoML models based on linguistic features, several variations of encoder-based Transformers such as BERT, and state-of-the-art LLMs as pathology classification models. The results demonstrated that LLMs outperform traditional methods, particularly on noisy and small datasets where training examples vary significantly in text length and genre. However, psycholinguistic features and encoder-based models can achieve performance comparable to language models when trained on texts from individuals with clinically confirmed depression, highlighting their potential effectiveness in targeted clinical applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

抑郁焦虑检测 机器学习 大型语言模型 编码器模型 临床应用
相关文章