cs.AI updates on arXiv.org 9小时前
数据蒸馏优化离线强化学习
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用数据蒸馏方法训练和蒸馏优质数据集,用于离线强化学习,实现模型在少量数据上达到与完整数据集或行为克隆方法相当的性能。

arXiv:2407.20299v3 Announce Type: replace-cross Abstract: Offline reinforcement learning often requires a quality dataset that we can train a policy on. However, in many situations, it is not possible to get such a dataset, nor is it easy to train a policy to perform well in the actual environment given the offline data. We propose using data distillation to train and distill a better dataset which can then be used for training a better policy model. We show that our method is able to synthesize a dataset where a model trained on it achieves similar performance to a model trained on the full dataset or a model trained using percentile behavioral cloning. Our project site is available at https://datasetdistillation4rl.github.io . We also provide our implementation at https://github.com/ggflow123/DDRL .

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据蒸馏 离线强化学习 模型训练 性能优化
相关文章