cs.AI updates on arXiv.org 9小时前
实时深度学习网络入侵检测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨利用深度学习算法从原始数据包中实时检测网络攻击的方法。提出了一种将数据包堆叠成窗口并使用二维图像表示的新方法,以适应计算机视觉模型处理。研究基于CIC IDS-2017数据集,包含良性流量和常见攻击,为研究提供全面基础。

arXiv:2407.17339v2 Announce Type: replace-cross Abstract: Most of the intrusion detection methods in computer networks are based on traffic flow characteristics. However, this approach may not fully exploit the potential of deep learning algorithms to directly extract features and patterns from raw packets. Moreover, it impedes real-time monitoring due to the necessity of waiting for the processing pipeline to complete and introduces dependencies on additional software components. In this paper, we investigate deep learning methodologies capable of detecting attacks in real-time directly from raw packet data within network traffic. We propose a novel approach where packets are stacked into windows and separately recognised, with a 2D image representation suitable for processing with computer vision models. Our investigation utilizes the CIC IDS-2017 dataset, which includes both benign traffic and prevalent real-world attacks, providing a comprehensive foundation for our research.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 网络入侵检测 实时监控 数据包处理 计算机视觉
相关文章