cs.AI updates on arXiv.org 15小时前
STACKFEED:改进RAG系统的知识库编辑方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于反馈的架构编辑方法,用于改进检索增强生成(RAG)系统中的知识库。通过多演员、集中式批评强化学习框架,该方法能迭代地优化知识库。实验结果表明,STACKFEED能显著提升知识库质量及RAG系统性能。

arXiv:2410.10584v2 Announce Type: replace Abstract: Large Language Models (LLMs) often generate incorrect or outdated information, especially in low-resource settings or when dealing with private data. To address this, Retrieval-Augmented Generation (RAG) uses external knowledge bases (KBs), but these can also suffer from inaccuracies. We introduce STACKFEED, a novel Structured Textual Actor-Critic Knowledge base editing with FEEDback approach that iteratively refines the KB based on expert feedback using a multi-actor, centralized critic reinforcement learning framework. STACKFEED defines a ReACT actor agent on each document to perform structured edits based on document specific targeted instructions. Experimental results showcase that STACKFEED significantly improves KB quality and performance of the RAG system. We evaluate STACKFEED on low-resource programming problems, modified python packaged and factual question-answering tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

知识库编辑 检索增强生成 强化学习 RAG系统 知识质量
相关文章