cs.AI updates on arXiv.org 前天 13:31
FDBM:新型分数扩散桥模型在蛋白质结构与图像翻译中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新型生成扩散桥框架FDBM,利用分数布朗运动近似实现,并应用于蛋白质结构和图像翻译。与布朗运动模型相比,FDBM在预测蛋白质构象和图像转换方面均取得了更好的性能。

arXiv:2511.01795v1 Announce Type: cross Abstract: We present Fractional Diffusion Bridge Models (FDBM), a novel generative diffusion bridge framework driven by an approximation of the rich and non-Markovian fractional Brownian motion (fBM). Real stochastic processes exhibit a degree of memory effects (correlations in time), long-range dependencies, roughness and anomalous diffusion phenomena that are not captured in standard diffusion or bridge modeling due to the use of Brownian motion (BM). As a remedy, leveraging a recent Markovian approximation of fBM (MA-fBM), we construct FDBM that enable tractable inference while preserving the non-Markovian nature of fBM. We prove the existence of a coupling-preserving generative diffusion bridge and leverage it for future state prediction from paired training data. We then extend our formulation to the Schr\"{o}dinger bridge problem and derive a principled loss function to learn the unpaired data translation. We evaluate FDBM on both tasks: predicting future protein conformations from aligned data, and unpaired image translation. In both settings, FDBM achieves superior performance compared to the Brownian baselines, yielding lower root mean squared deviation (RMSD) of C$_\alpha$ atomic positions in protein structure prediction and lower Fr\'echet Inception Distance (FID) in unpaired image translation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

分数扩散桥模型 蛋白质结构预测 图像转换 分数布朗运动 扩散桥
相关文章