cs.AI updates on arXiv.org 5小时前
ICL4Decomp:基于上下文学习的混合反编译框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为ICL4Decomp的混合反编译框架,利用上下文学习指导大型语言模型生成可重执行的源代码,在多个数据集、优化级别和编译器上评估,相较于现有方法提高了40%的可重执行性。

arXiv:2511.01763v1 Announce Type: cross Abstract: Binary decompilation plays an important role in software security analysis, reverse engineering, and malware understanding when source code is unavailable. However, existing decompilation techniques often fail to produce source code that can be successfully recompiled and re-executed, particularly for optimized binaries. Recent advances in large language models (LLMs) have enabled neural approaches to decompilation, but the generated code is typically only semantically plausible rather than truly executable, limiting their practical reliability. These shortcomings arise from compiler optimizations and the loss of semantic cues in compiled code, which LLMs struggle to recover without contextual guidance. To address this challenge, we propose ICL4Decomp, a hybrid decompilation framework that leverages in-context learning (ICL) to guide LLMs toward generating re-executable source code. We evaluate our method across multiple datasets, optimization levels, and compilers, demonstrating around 40\% improvement in re-executability over state-of-the-art decompilation methods while maintaining robustness.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

反编译 上下文学习 大型语言模型 软件安全 源代码生成
相关文章