cs.AI updates on arXiv.org 前天 13:30
HSDS:基于分层机制的诈骗检测系统
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种分层诈骗检测系统HSDS,结合轻量级多模型投票前端和微调的LLaMA 3.1 8B后端,通过集成四分类器、对抗训练等手段提高检测准确性和鲁棒性,实验表明其在对抗攻击下的表现优于传统机器学习模型。

arXiv:2511.01746v1 Announce Type: cross Abstract: Scam detection remains a critical challenge in cybersecurity as adversaries craft messages that evade automated filters. We propose a Hierarchical Scam Detection System (HSDS) that combines a lightweight multi-model voting front end with a fine-tuned LLaMA 3.1 8B Instruct back end to improve accuracy and robustness against adversarial attacks. An ensemble of four classifiers provides preliminary predictions through majority vote, and ambiguous cases are escalated to the fine-tuned model, which is optimized with adversarial training to reduce misclassification. Experiments show that this hierarchical design both improves adversarial scam detection and shortens inference time by routing most cases away from the LLM, outperforming traditional machine-learning baselines and proprietary LLM baselines. The findings highlight the effectiveness of a hybrid voting mechanism and adversarial fine-tuning in fortifying LLMs against evolving scam tactics, enhancing the resilience of automated scam detection systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

诈骗检测 分层系统 LLaMA 3.1 对抗训练 机器学习
相关文章