cs.AI updates on arXiv.org 5小时前
基于LLM的能源效率问答系统研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究利用大型语言模型(LLM)在图检索增强生成(RAG)架构中应用于能源效率问答,自动提取知识图谱,多语言回答准确率75.2%,多语言能力良好。

arXiv:2511.01643v1 Announce Type: cross Abstract: In this work, we investigate the use of Large Language Models (LLMs) within a graph-based Retrieval Augmented Generation (RAG) architecture for Energy Efficiency (EE) Question Answering. First, the system automatically extracts a Knowledge Graph (KG) from guidance and regulatory documents in the energy field. Then, the generated graph is navigated and reasoned upon to provide users with accurate answers in multiple languages. We implement a human-based validation using the RAGAs framework properties, a validation dataset comprising 101 question-answer pairs, and domain experts. Results confirm the potential of this architecture and identify its strengths and weaknesses. Validation results show how the system correctly answers in about three out of four of the cases (75.2 +- 2.7%), with higher results on questions related to more general EE answers (up to 81.0 +- 4.1%), and featuring promising multilingual abilities (4.4% accuracy loss due to translation).

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 能源效率问答 知识图谱 多语言能力 RAG架构
相关文章