cs.AI updates on arXiv.org 前天 13:30
轻量级时间序列分类新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于Hadamard卷积变换的特征提取方法,用于时间序列分类,该方法在保持与现有方法兼容的同时,通过核正交性提升计算效率、鲁棒性和适应性,实验结果表明性能优于现有方法。

arXiv:2511.01572v1 Announce Type: cross Abstract: Time series classification holds broad application value in communications, information countermeasures, finance, and medicine. However, state-of-the-art (SOTA) methods-including HIVE-COTE, Proximity Forest, and TS-CHIEF-exhibit high computational complexity, coupled with lengthy parameter tuning and training cycles. In contrast, lightweight solutions like ROCKET (Random Convolutional Kernel Transform) offer greater efficiency but leave substantial room for improvement in kernel selection and computational overhead. To address these challenges, we propose a feature extraction approach based on Hadamard convolutional transform, utilizing column or row vectors of Hadamard matrices as convolution kernels with extended lengths of varying sizes. This enhancement maintains full compatibility with existing methods (e.g., ROCKET) while leveraging kernel orthogonality to boost computational efficiency, robustness, and adaptability. Comprehensive experiments on multi-domain datasets-focusing on the UCR time series dataset-demonstrate SOTA performance: F1-score improved by at least 5% vs. ROCKET, with 50% shorter training time than miniROCKET (fastest ROCKET variant) under identical hyperparameters, enabling deployment on ultra-low-power embedded devices. All code is available on GitHub.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列分类 Hadamard卷积变换 轻量级方法 计算效率 鲁棒性
相关文章