cs.AI updates on arXiv.org 13小时前
边缘AI持续学习新突破:CLP-SNN架构
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为CLP-SNN的神经形态解决方案,用于边缘设备上的持续学习原型。该架构在OpenLORIS的少量样本学习实验中表现出色,实现了与重放方法相当的性能,同时具有更高效的能源利用。

arXiv:2511.01553v1 Announce Type: cross Abstract: AI systems on edge devices face a critical challenge in open-world environments: adapting when data distributions shift and novel classes emerge. While offline training dominates current paradigms, online continual learning (OCL)--where models learn incrementally from non-stationary streams without catastrophic forgetting--remains challenging in power-constrained settings. We present a neuromorphic solution called CLP-SNN: a spiking neural network architecture for Continually Learning Prototypes and its implementation on Intel's Loihi 2 chip. Our approach introduces three innovations: (1) event-driven and spatiotemporally sparse local learning, (2) a self-normalizing three-factor learning rule maintaining weight normalization, and (3) integrated neurogenesis and metaplasticity for capacity expansion and forgetting mitigation. On OpenLORIS few-shot learning experiments, CLP-SNN achieves accuracy competitive with replay methods while being rehearsal-free. CLP-SNN delivers transformative efficiency gains: 70\times faster (0.33ms vs 23.2ms), and 5,600\times more energy efficient (0.05mJ vs 281mJ) than the best alternative OCL on edge GPU. This demonstrates that co-designed brain-inspired algorithms and neuromorphic hardware can break traditional accuracy-efficiency trade-offs for future edge AI systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

边缘AI 持续学习 神经形态架构 CLP-SNN 能源效率
相关文章