cs.AI updates on arXiv.org 18小时前
五层模型提升自动驾驶罕见场景生成
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种五层结构模型,用于提升自动驾驶罕见场景的生成与评估。通过引入子类和特性,模型能更精确地比较场景中各元素,并采用数据增强策略与大型基础模型协同工作。文中还探讨了评估生成数据集相关性的多样性和原创性指标。

arXiv:2511.01541v1 Announce Type: cross Abstract: Rare and challenging driving scenarios are critical for autonomous vehicle development. Since they are difficult to encounter, simulating or generating them using generative models is a popular approach. Following previous efforts to structure driving scenario representations in a layer model, we propose a structured five-layer model to improve the evaluation and generation of rare scenarios. We use this model alongside large foundational models to generate new driving scenarios using a data augmentation strategy. Unlike previous representations, our structure introduces subclasses and characteristics for every agent of the scenario, allowing us to compare them using an embedding specific to our layer-model. We study and adapt two metrics to evaluate the relevance of a synthetic dataset in the context of a structured representation: the diversity score estimates how different the scenarios of a dataset are from one another, while the originality score calculates how similar a synthetic dataset is from a real reference set. This paper showcases both metrics in different generation setup, as well as a qualitative evaluation of synthetic videos generated from structured scenario descriptions. The code and extended results can be found at https://github.com/Valgiz/5LMSG.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自动驾驶 罕见场景 数据增强 模型生成 评估指标
相关文章