cs.AI updates on arXiv.org 前天 13:30
Bengali文本净化新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合Pareto优化的LLMs和Chain-of-Thought(CoT)提示的Bengali文本净化新方法,构建BanglaNirTox数据集,显著提升净化效果。

arXiv:2511.01512v1 Announce Type: cross Abstract: Toxic language in Bengali remains prevalent, especially in online environments, with few effective precautions against it. Although text detoxification has seen progress in high-resource languages, Bengali remains underexplored due to limited resources. In this paper, we propose a novel pipeline for Bengali text detoxification that combines Pareto class-optimized large language models (LLMs) and Chain-of-Thought (CoT) prompting to generate detoxified sentences. To support this effort, we construct BanglaNirTox, an artificially generated parallel corpus of 68,041 toxic Bengali sentences with class-wise toxicity labels, reasonings, and detoxified paraphrases, using Pareto-optimized LLMs evaluated on random samples. The resulting BanglaNirTox dataset is used to fine-tune language models to produce better detoxified versions of Bengali sentences. Our findings show that Pareto-optimized LLMs with CoT prompting significantly enhance the quality and consistency of Bengali text detoxification.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

文本净化 Bengali LLMs CoT提示 BanglaNirTox数据集
相关文章