cs.AI updates on arXiv.org 11月05日 13:30
MO-SeGMan:多目标优化机器人重排规划器
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为MO-SeGMan的多目标优化机器人重排规划器,用于解决高度约束的重排问题。该规划器通过懒加载方法生成物体放置序列,以最小化每个物体的重规划次数和机器人行进距离,同时保持关键依赖结构。通过选择性引导正向搜索和自适应子目标选择方法,提高了解决方案的质量。实验结果表明,MO-SeGMan在所有基准重排任务中均能生成可行的运动规划,且比基线实现更快的解决方案和更高的解决方案质量。

arXiv:2511.01476v1 Announce Type: cross Abstract: In this work, we introduce MO-SeGMan, a Multi-Objective Sequential and Guided Manipulation planner for highly constrained rearrangement problems. MO-SeGMan generates object placement sequences that minimize both replanning per object and robot travel distance while preserving critical dependency structures with a lazy evaluation method. To address highly cluttered, non-monotone scenarios, we propose a Selective Guided Forward Search (SGFS) that efficiently relocates only critical obstacles and to feasible relocation points. Furthermore, we adopt a refinement method for adaptive subgoal selection to eliminate unnecessary pick-and-place actions, thereby improving overall solution quality. Extensive evaluations on nine benchmark rearrangement tasks demonstrate that MO-SeGMan generates feasible motion plans in all cases, consistently achieving faster solution times and superior solution quality compared to the baselines. These results highlight the robustness and scalability of the proposed framework for complex rearrangement planning problems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多目标优化 机器人重排 运动规划 依赖结构 解决方案质量
相关文章