cs.AI updates on arXiv.org 14小时前
RAGSmith:模块化RAG架构搜索框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出RAGSmith,一种模块化框架,将RAG设计视为一种端到端架构搜索,通过遗传搜索优化检索和生成指标,评估结果显示RAGSmith在多个领域上均优于基线。

arXiv:2511.01386v1 Announce Type: cross Abstract: Retrieval-Augmented Generation (RAG) quality depends on many interacting choices across retrieval, ranking, augmentation, prompting, and generation, so optimizing modules in isolation is brittle. We introduce RAGSmith, a modular framework that treats RAG design as an end-to-end architecture search over nine technique families and 46{,}080 feasible pipeline configurations. A genetic search optimizes a scalar objective that jointly aggregates retrieval metrics (recall@k, mAP, nDCG, MRR) and generation metrics (LLM-Judge and semantic similarity). We evaluate on six Wikipedia-derived domains (Mathematics, Law, Finance, Medicine, Defense Industry, Computer Science), each with 100 questions spanning factual, interpretation, and long-answer types. RAGSmith finds configurations that consistently outperform naive RAG baseline by +3.8\% on average (range +1.2\% to +6.9\% across domains), with gains up to +12.5\% in retrieval and +7.5\% in generation. The search typically explores $\approx 0.2\%$ of the space ($\sim 100$ candidates) and discovers a robust backbone -- vector retrieval plus post-generation reflection/revision -- augmented by domain-dependent choices in expansion, reranking, augmentation, and prompt reordering; passage compression is never selected. Improvement magnitude correlates with question type, with larger gains on factual/long-answer mixes than interpretation-heavy sets. These results provide practical, domain-aware guidance for assembling effective RAG systems and demonstrate the utility of evolutionary search for full-pipeline optimization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG 架构搜索 遗传算法 检索增强生成
相关文章