cs.AI updates on arXiv.org 19小时前
移动应用个性化机制审计与可视化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于传感器仿冒和角色模拟的沙盒系统,用于审计和可视化移动应用对推断行为的响应。系统注入多传感器配置文件,实时模拟用户行为,通过自动化截图和GPT-4视觉UI总结,帮助记录微妙的个性化线索。

arXiv:2511.01336v1 Announce Type: cross Abstract: Mobile applications increasingly rely on sensor data to infer user context and deliver personalized experiences. Yet the mechanisms behind this personalization remain opaque to users and researchers alike. This paper presents a sandbox system that uses sensor spoofing and persona simulation to audit and visualize how mobile apps respond to inferred behaviors. Rather than treating spoofing as adversarial, we demonstrate its use as a tool for behavioral transparency and user empowerment. Our system injects multi-sensor profiles - generated from structured, lifestyle-based personas - into Android devices in real time, enabling users to observe app responses to contexts such as high activity, location shifts, or time-of-day changes. With automated screenshot capture and GPT-4 Vision-based UI summarization, our pipeline helps document subtle personalization cues. Preliminary findings show measurable app adaptations across fitness, e-commerce, and everyday service apps such as weather and navigation. We offer this toolkit as a foundation for privacy-enhancing technologies and user-facing transparency interventions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

移动应用 个性化机制 传感器仿冒 用户隐私
相关文章