cs.AI updates on arXiv.org 12小时前
ReSpec:检索增强的推测解码框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为ReSpec的检索增强的推测解码框架,旨在提高大型语言模型推理速度,同时保持输出质量。该框架通过熵指导自适应触发、反馈驱动的候选选择和源感知宽松验证策略等创新,实现了比现有方法更高的加速效果。

arXiv:2511.01282v1 Announce Type: cross Abstract: Speculative decoding (SD) has emerged as an effective technique to accelerate large language model (LLM) inference without compromising output quality. However, the achievable speedup largely depends on the effectiveness of the drafting model. While model-based methods like EAGLE-2 are accurate but costly, retrieval-enhanced methods like SAM-Decoding rely on heuristic switching strategies that often trigger unnecessary retrievals. To address this, we propose ReSpec (\textbf{Re}trieval-enhanced \textbf{Spe}culative Decoding), a novel framework that transforms heuristic drafter switching into adaptive decision-making. ReSpec features three core innovations: 1) An \textbf{entropy-guided adaptive trigger} quantifies contextual predictability to initiate retrieval only when uncertainty is low, avoiding costly low-quality speculations. 2) A \textbf{feedback-driven candidate selection} leverages historical feedback to organize multiple high-quality candidates for parallel verification, maximizing retrieval utility. 3) A source-aware \textbf{relaxed verification strategy} applies strict checks to model-generated drafts while using a relaxed verification for retrieved drafts, achieving a better balance between accuracy and efficiency. Extensive experiments on Spec-Bench demonstrate that ReSpec achieves state-of-the-art acceleration,outperforming EAGLE-2 and SAM-Decoding by over $33\%$ and $25\%$, respectively, while maintaining output quality.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 推测解码 检索增强 加速效果 输出质量
相关文章