cs.AI updates on arXiv.org 7小时前
改进印度食品VQA系统:推理链与强化学习
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种改进印度食品视觉问答系统的方法,通过引入推理链和强化学习,显著提升了系统的准确性。

arXiv:2511.01213v1 Announce Type: cross Abstract: The immense diversity in the culture and culinary of Indian cuisines calls attention to the major shortcoming of the existing Visual Question Answering(VQA) systems which are inclined towards the foods from Western region. Recent attempt towards building a VQA dataset for Indian food is a step towards addressing this challenge. However, their approach towards VQA follows a two-step process in which the answer is generated first, followed by the explanation of the expected answer. In this work, we claim that food VQA requires to follow a multi-step reasoning process to arrive at an accurate answer, especially in the context of India food, which involves understanding complex culinary context and identifying relationships between various food items. With this hypothesis we create reasoning chains upon the QA with minimal human intervention. We fine-tune smaller LLMs and VLMs with auto-validated reasoning chains and further train them using reinforcement learning with larger data. With augmentation of reasoning chains, we observed accuracy improvement of an average 10 percentage points on the baseline. We provide detailed analysis in terms the effect of addition of reasoning chains for the Indian Food VQA task. Index Terms - FoodVQA, Reasoning Chains, Reinforcement Learning, Knowledge Graph.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

FoodVQA Reasoning Chains Reinforcement Learning Knowledge Graph Indian Cuisine
相关文章