cs.AI updates on arXiv.org 16小时前
Self-Harmony:测试时强化学习新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Self-Harmony框架,通过稳定性和可靠性解决测试时强化学习中的问题,实现无标签测试设置下的最优结果。

arXiv:2511.01191v1 Announce Type: cross Abstract: Test-time reinforcement learning (TTRL) offers a label-free paradigm for adapting models using only synthetic signals at inference, but its success hinges on constructing reliable learning signals. Standard approaches such as majority voting often collapse to spurious yet popular answers. We introduce Self-Harmony, a framework built on a simple intuition: the correct answer should remain stable across both an original question and its paraphrase. Self-Harmony operationalizes this by employing a single model in two complementary roles: a Solver to produce answers and a Reframer to rephrase the input. Based on this, we further propose a pseudo-label method: instead of majority voting, it aggregates answer frequencies across these original and reframed views using the harmonic mean. This is a process that naturally selects for solutions stable under reframing, thereby avoiding the common trap of favoring view-dependent, spurious answers. Crucially, this requires no human supervision or auxiliary models. Across diverse reasoning benchmarks, Self-Harmony achieves state-of-the-art results at the label-free test-time setting, ranking first in 28 of 30 settings across multiple methods. Beyond accuracy, it demonstrates unprecedented robustness, with zero training failures in all experiments, underscoring its stability and reliability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

测试时强化学习 Self-Harmony 无标签测试 稳定性 可靠性
相关文章