cs.AI updates on arXiv.org 16小时前
MicroAUNet:轻量级结肠息肉分割网络
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为MicroAUNet的轻量级结肠息肉分割网络,旨在解决现有深度学习模型在结肠息肉分割中的局限性,如模糊的边界和计算复杂度高的问题。实验结果表明,MicroAUNet在保证高精度的同时,具有极低的模型复杂度,适用于实时临床应用。

arXiv:2511.01143v1 Announce Type: cross Abstract: Early and accurate segmentation of colorectal polyps is critical for reducing colorectal cancer mortality, which has been extensively explored by academia and industry. However, current deep learning-based polyp segmentation models either compromise clinical decision-making by providing ambiguous polyp margins in segmentation outputs or rely on heavy architectures with high computational complexity, resulting in insufficient inference speeds for real-time colorectal endoscopic applications. To address this problem, we propose MicroAUNet, a light-weighted attention-based segmentation network that combines depthwise-separable dilated convolutions with a single-path, parameter-shared channel-spatial attention block to strengthen multi-scale boundary features. On the basis of it, a progressive two-stage knowledge-distillation scheme is introduced to transfer semantic and boundary cues from a high-capacity teacher. Extensive experiments on benchmarks also demonstrate the state-of-the-art accuracy under extremely low model complexity, indicating that MicroAUNet is suitable for real-time clinical polyp segmentation. The code is publicly available at https://github.com/JeremyXSC/MicroAUNet.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

结肠息肉分割 深度学习 实时临床应用 轻量级网络 知识蒸馏
相关文章