cs.AI updates on arXiv.org 11月05日 13:29
基于层次序列预测的图像地理定位新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种受人类定位方法启发的图像地理定位新方法,通过层次序列预测实现从广义区域到具体地址的精确定位。使用S2细胞进行预测,并引入多种自回归采样策略,在Im2GPS3k和YFCC4k数据集上实现最先进性能。

arXiv:2511.01082v1 Announce Type: cross Abstract: Image geolocalization, the task of determining an image's geographic origin, poses significant challenges, largely due to visual similarities across disparate locations and the large search space. To address these issues, we propose a hierarchical sequence prediction approach inspired by how humans narrow down locations from broad regions to specific addresses. Analogously, our model predicts geographic tokens hierarchically, first identifying a general region and then sequentially refining predictions to increasingly precise locations. Rather than relying on explicit semantic partitions, our method uses S2 cells, a nested, multiresolution global grid, and sequentially predicts finer-level cells conditioned on visual inputs and previous predictions. This procedure mirrors autoregressive text generation in large language models. Much like in language modeling, final performance depends not only on training but also on inference-time strategy. We investigate multiple top-down traversal methods for autoregressive sampling, incorporating techniques from test-time compute scaling used in language models. Specifically, we integrate beam search and multi-sample inference while exploring various selection strategies to determine the final output. This enables the model to manage uncertainty by exploring multiple plausible paths through the hierarchy. We evaluate our method on the Im2GPS3k and YFCC4k datasets against two distinct sets of baselines: those that operate without a Multimodal Large Language Model (MLLM) and those that leverage one. In the MLLM-free setting, our model surpasses other comparable baselines on nearly all metrics, achieving state-of-the-art performance with accuracy gains of up to 13.9%. When augmented with an MLLM, our model outperforms all baselines, setting a new state-of-the-art across all metrics. The source code is available at https://github.com/NNargesNN/GeoToken.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图像地理定位 层次序列预测 S2细胞 自回归采样 性能提升
相关文章