cs.AI updates on arXiv.org 11月05日 13:28
对称性学习框架提升活动识别准确率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于分类对称性的学习框架,通过捕捉信号随时间、尺度及传感器层次的变化,构建特征表示结构,实现模型在时间偏移、幅度漂移和设备方向变化等现实扭曲下的稳定性。在UCI人类活动识别基准测试中,该框架将分布外准确率提升了约46个百分点,验证了抽象对称原理在实际感知任务中的性能提升。

arXiv:2511.00900v1 Announce Type: cross Abstract: Human activity recognition is challenging because sensor signals shift with context, motion, and environment; effective models must therefore remain stable as the world around them changes. We introduce a categorical symmetry-aware learning framework that captures how signals vary over time, scale, and sensor hierarchy. We build these factors into the structure of feature representations, yielding models that automatically preserve the relationships between sensors and remain stable under realistic distortions such as time shifts, amplitude drift, and device orientation changes. On the UCI Human Activity Recognition benchmark, this categorical symmetry-driven design improves out-of-distribution accuracy by approx. 46 percentage points (approx. 3.6x over the baseline), demonstrating that abstract symmetry principles can translate into concrete performance gains in everyday sensing tasks via category-equivariant representation theory.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

活动识别 对称性学习 机器学习 传感器信号 模型稳定性
相关文章