cs.AI updates on arXiv.org 11月05日 13:28
高效随机贪心算法解决k-次模问题
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了k-次模覆盖问题,提出了一种快速随机贪心算法,在降低查询复杂度的同时,实现了强二标准近似的保证,适用于大规模AI应用。

arXiv:2511.00869v1 Announce Type: cross Abstract: We study the $k$-Submodular Cover ($kSC$) problem, a natural generalization of the classical Submodular Cover problem that arises in artificial intelligence and combinatorial optimization tasks such as influence maximization, resource allocation, and sensor placement. Existing algorithms for $\kSC$ often provide weak approximation guarantees or incur prohibitively high query complexity. To overcome these limitations, we propose a \textit{Fast Stochastic Greedy} algorithm that achieves strong bicriteria approximation while substantially lowering query complexity compared to state-of-the-art methods. Our approach dramatically reduces the number of function evaluations, making it highly scalable and practical for large-scale real-world AI applications where efficiency is essential.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

k-次模覆盖 随机贪心算法 查询复杂度 近似算法 人工智能
相关文章