cs.AI updates on arXiv.org 21小时前
隐私感知联邦学习基准FedOnco-Bench发布
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍FedOnco-Bench,一个基于合成肿瘤CT扫描的隐私感知联邦学习基准,评估了不同联邦学习方法在隐私泄露和分割性能之间的权衡。

arXiv:2511.00795v1 Announce Type: cross Abstract: Federated Learning (FL) allows multiple institutions to cooperatively train machine learning models while retaining sensitive data at the source, which has great utility in privacy-sensitive environments. However, FL systems remain vulnerable to membership-inference attacks and data heterogeneity. This paper presents FedOnco-Bench, a reproducible benchmark for privacy-aware FL using synthetic oncologic CT scans with tumor annotations. It evaluates segmentation performance and privacy leakage across FL methods: FedAvg, FedProx, FedBN, and FedAvg with DP-SGD. Results show a distinct trade-off between privacy and utility: FedAvg is high performance (Dice around 0.85) with more privacy leakage (attack AUC about 0.72), while DP-SGD provides a higher level of privacy (AUC around 0.25) at the cost of accuracy (Dice about 0.79). FedProx and FedBN offer balanced performance under heterogeneous data, especially with non-identical distributed client data. FedOnco-Bench serves as a standardized, open-source platform for benchmarking and developing privacy-preserving FL methods for medical image segmentation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 隐私保护 医学图像分割 基准测试 FedOnco-Bench
相关文章