cs.AI updates on arXiv.org 前天 13:26
EP-HDC:优化隐私保护机器学习
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于加密参数的HDC(EP-HDC)方法,旨在优化隐私保护机器学习,降低加密和数据传输开销,提高批量推理的吞吐量和延迟。

arXiv:2511.00737v1 Announce Type: cross Abstract: While homomorphic encryption (HE) provides strong privacy protection, its high computational cost has restricted its application to simple tasks. Recently, hyperdimensional computing (HDC) applied to HE has shown promising performance for privacy-preserving machine learning (PPML). However, when applied to more realistic scenarios such as batch inference, the HDC-based HE has still very high compute time as well as high encryption and data transmission overheads. To address this problem, we propose HDC with encrypted parameters (EP-HDC), which is a novel PPML approach featuring client-side HE, i.e., inference is performed on a client using a homomorphically encrypted model. Our EP-HDC can effectively mitigate the encryption and data transmission overhead, as well as providing high scalability with many clients while providing strong protection for user data and model parameters. In addition to application examples for our client-side PPML, we also present design space exploration involving quantization, architecture, and HE-related parameters. Our experimental results using the BFV scheme and the Face/Emotion datasets demonstrate that our method can improve throughput and latency of batch inference by orders of magnitude over previous PPML methods (36.52~1068x and 6.45~733x, respectively) with less than 1% accuracy degradation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

隐私保护机器学习 加密参数 批量推理 HDC EP-HDC
相关文章