cs.AI updates on arXiv.org 11小时前
深度学习优化中的同质曲率模型分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于权重矩阵结构的深度学习优化模型,通过假设损失函数曲率的各向同性,分析权重更新与损失函数变化的关系,并应用于Muon优化器和矩阵梯度方法。

arXiv:2511.00674v1 Announce Type: cross Abstract: In this paper, we introduce a model for analyzing deep learning optimization over a single iteration by leveraging the matrix structure of the weights. We derive the model by assuming isotropy of curvature, including the second-order Hessian and higher-order terms, of the loss function across all perturbation directions; hence, we call it the isotropic curvature model. This model is a convex optimization program amenable to analysis, which allows us to understand how an update on the weights in the form of a matrix relates to the change in the total loss function. As an application, we use the isotropic curvature model to analyze the recently introduced Muon optimizer and other matrix-gradient methods for training language models. First, we show that under a general growth condition on the curvature, the optimal update matrix is obtained by making the spectrum of the original gradient matrix more homogeneous -- that is, making its singular values closer in ratio -- which in particular improves the conditioning of the update matrix. Next, we show that the orthogonalized gradient becomes optimal for the isotropic curvature model when the curvature exhibits a phase transition in growth. Taken together, these results suggest that the gradient orthogonalization employed in Muon and other related methods is directionally correct but may not be strictly optimal. Finally, we discuss future research on how to leverage the isotropic curvature model for designing new optimization methods for training deep learning and language models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 优化算法 同质曲率模型 Muon优化器 矩阵梯度
相关文章