arXiv:2511.00674v1 Announce Type: cross Abstract: In this paper, we introduce a model for analyzing deep learning optimization over a single iteration by leveraging the matrix structure of the weights. We derive the model by assuming isotropy of curvature, including the second-order Hessian and higher-order terms, of the loss function across all perturbation directions; hence, we call it the isotropic curvature model. This model is a convex optimization program amenable to analysis, which allows us to understand how an update on the weights in the form of a matrix relates to the change in the total loss function. As an application, we use the isotropic curvature model to analyze the recently introduced Muon optimizer and other matrix-gradient methods for training language models. First, we show that under a general growth condition on the curvature, the optimal update matrix is obtained by making the spectrum of the original gradient matrix more homogeneous -- that is, making its singular values closer in ratio -- which in particular improves the conditioning of the update matrix. Next, we show that the orthogonalized gradient becomes optimal for the isotropic curvature model when the curvature exhibits a phase transition in growth. Taken together, these results suggest that the gradient orthogonalization employed in Muon and other related methods is directionally correct but may not be strictly optimal. Finally, we discuss future research on how to leverage the isotropic curvature model for designing new optimization methods for training deep learning and language models.
