cs.AI updates on arXiv.org 7小时前
FTT-GRU模型在工业机械剩余寿命预测中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种结合快速时序变换器(FTT)和门控循环单元(GRU)的混合模型FTT-GRU,用于工业机械剩余寿命预测。通过在NASA CMAPSS数据集上的实验,FTT-GRU模型在预测精度和效率上均优于现有方法。

arXiv:2511.00564v1 Announce Type: cross Abstract: Accurate prediction of the remaining useful life (RUL) of industrial machinery is essential for reducing downtime and optimizing maintenance schedules. Existing approaches, such as long short-term memory (LSTM) networks and convolutional neural networks (CNNs), often struggle to model both global temporal dependencies and fine-grained degradation trends in multivariate sensor data. We propose a hybrid model, FTT-GRU, which combines a Fast Temporal Transformer (FTT) -- a lightweight Transformer variant using linearized attention via fast Fourier transform (FFT) -- with a gated recurrent unit (GRU) layer for sequential modeling. To the best of our knowledge, this is the first application of an FTT with a GRU for RUL prediction on NASA CMAPSS, enabling simultaneous capture of global and local degradation patterns in a compact architecture. On CMAPSS FD001, FTT-GRU attains RMSE 30.76, MAE 18.97, and $R^2=0.45$, with 1.12 ms CPU latency at batch=1. Relative to the best published deep baseline (TCN--Attention), it improves RMSE by 1.16\% and MAE by 4.00\%. Training curves averaged over $k=3$ runs show smooth convergence with narrow 95\% confidence bands, and ablations (GRU-only, FTT-only) support the contribution of both components. These results demonstrate that a compact Transformer-RNN hybrid delivers accurate and efficient RUL predictions on CMAPSS, making it suitable for real-time industrial prognostics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

FTT-GRU 工业机械 剩余寿命预测 深度学习 CMAPSS
相关文章