cs.AI updates on arXiv.org 11小时前
区域感知重建提升fMRI基础模型性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于区域感知的重建策略,用于fMRI基础模型的预训练,显著提高了区分健康对照与ADHD患者的分类准确率,同时增强了模型的解释性和鲁棒性。

arXiv:2511.00443v1 Announce Type: cross Abstract: The emergence of foundation models in neuroimaging is driven by the increasing availability of large-scale and heterogeneous brain imaging datasets. Recent advances in self-supervised learning, particularly reconstruction-based objectives, have demonstrated strong potential for pretraining models that generalize effectively across diverse downstream functional MRI (fMRI) tasks. In this study, we explore region-aware reconstruction strategies for a foundation model in resting-state fMRI, moving beyond approaches that rely on random region masking. Specifically, we introduce an ROI-guided masking strategy using the Automated Anatomical Labelling Atlas (AAL3), applied directly to full 4D fMRI volumes to selectively mask semantically coherent brain regions during self-supervised pretraining. Using the ADHD-200 dataset comprising 973 subjects with resting-state fMRI scans, we show that our method achieves a 4.23% improvement in classification accuracy for distinguishing healthy controls from individuals diagnosed with ADHD, compared to conventional random masking. Region-level attribution analysis reveals that brain volumes within the limbic region and cerebellum contribute most significantly to reconstruction fidelity and model representation. Our results demonstrate that masking anatomical regions during model pretraining not only enhances interpretability but also yields more robust and discriminative representations. In future work, we plan to extend this approach by evaluating it on additional neuroimaging datasets, and developing new loss functions explicitly derived from region-aware reconstruction objectives. These directions aim to further improve the robustness and interpretability of foundation models for functional neuroimaging.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

fMRI 基础模型 区域感知重建 神经影像学 深度学习
相关文章