cs.AI updates on arXiv.org 14小时前
强化学习视频瞬间检索与多智能体框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于强化学习的视频瞬间检索模型,结合多智能体系统框架,解决模型定位结果冲突,提高检索效率。实验表明,该方法在基准数据集上优于现有技术。

arXiv:2511.00370v1 Announce Type: cross Abstract: Video moment retrieval uses a text query to locate a moment from a given untrimmed video reference. Locating corresponding video moments with text queries helps people interact with videos efficiently. Current solutions for this task have not considered conflict within location results from different models, so various models cannot integrate correctly to produce better results. This study introduces a reinforcement learning-based video moment retrieval model that can scan the whole video once to find the moment's boundary while producing its locational evidence. Moreover, we proposed a multi-agent system framework that can use evidential learning to resolve conflicts between agents' localization output. As a side product of observing and dealing with conflicts between agents, we can decide whether a query has no corresponding moment in a video (out-of-scope) without additional training, which is suitable for real-world applications. Extensive experiments on benchmark datasets show the effectiveness of our proposed methods compared with state-of-the-art approaches. Furthermore, the results of our study reveal that modeling competition and conflict of the multi-agent system is an effective way to improve RL performance in moment retrieval and show the new role of evidential learning in the multi-agent framework.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视频瞬间检索 强化学习 多智能体系统 冲突解决 视频检索
相关文章