arXiv:2511.00369v1 Announce Type: cross Abstract: Achieving both accurate and interpretable classification of motor imagery EEG remains a key challenge in brain computer interface (BCI) research. This paper compares a transparent fuzzy reasoning approach (ANFIS-FBCSP-PSO) with a deep learning benchmark (EEGNet) using the BCI Competition IV-2a dataset. The ANFIS pipeline combines filter bank common spatial pattern feature extraction with fuzzy IF-THEN rules optimized via particle swarm optimization, while EEGNet learns hierarchical spatial temporal representations directly from raw EEG data. In within-subject experiments, the fuzzy neural model performed better (68.58 percent +/- 13.76 percent accuracy, kappa = 58.04 percent +/- 18.43), while in cross-subject (LOSO) tests, the deep model exhibited stronger generalization (68.20 percent +/- 12.13 percent accuracy, kappa = 57.33 percent +/- 16.22). The study provides practical guidance for selecting MI-BCI systems according to design goals: interpretability or robustness across users. Future investigations into transformer based and hybrid neuro symbolic frameworks are expected to advance transparent EEG decoding.
