cs.AI updates on arXiv.org 8小时前
模糊推理与深度学习在BCI中的应用比较
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对比了模糊推理方法(ANFIS-FBCSP-PSO)与深度学习模型(EEGNet)在脑机接口(BCI)研究中的应用,并基于BCI Competition IV-2a数据集进行实验。结果表明,模糊神经网络在个体实验中表现更佳,而深度学习模型在跨个体测试中具有更强的泛化能力。

arXiv:2511.00369v1 Announce Type: cross Abstract: Achieving both accurate and interpretable classification of motor imagery EEG remains a key challenge in brain computer interface (BCI) research. This paper compares a transparent fuzzy reasoning approach (ANFIS-FBCSP-PSO) with a deep learning benchmark (EEGNet) using the BCI Competition IV-2a dataset. The ANFIS pipeline combines filter bank common spatial pattern feature extraction with fuzzy IF-THEN rules optimized via particle swarm optimization, while EEGNet learns hierarchical spatial temporal representations directly from raw EEG data. In within-subject experiments, the fuzzy neural model performed better (68.58 percent +/- 13.76 percent accuracy, kappa = 58.04 percent +/- 18.43), while in cross-subject (LOSO) tests, the deep model exhibited stronger generalization (68.20 percent +/- 12.13 percent accuracy, kappa = 57.33 percent +/- 16.22). The study provides practical guidance for selecting MI-BCI systems according to design goals: interpretability or robustness across users. Future investigations into transformer based and hybrid neuro symbolic frameworks are expected to advance transparent EEG decoding.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

脑机接口 模糊推理 深度学习 EEG BCI
相关文章