cs.AI updates on arXiv.org 11月05日 13:21
LLMs校准能力演化研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型(LLMs)在预测概率与正确性一致性上的校准能力,分析了校准在网络深度中的演化过程,揭示了校准能力的分布现象,为LLMs中的信心调节机制提供了新的见解。

arXiv:2511.00280v1 Announce Type: cross Abstract: Large Language Models (LLMs) have demonstrated inherent calibration capabilities, where predicted probabilities align well with correctness, despite prior findings that deep neural networks are often overconfident. Recent studies have linked this behavior to specific components in the final layer, such as entropy neurons and the unembedding matrix null space. In this work, we provide a complementary perspective by investigating how calibration evolves throughout the network depth. Analyzing multiple open-weight models on the MMLU benchmark, we uncover a distinct confidence correction phase in the upper/later layers, where model confidence is actively recalibrated after decision certainty has been reached. Furthermore, we identify a low-dimensional calibration direction in the residual stream whose perturbation significantly improves calibration metrics (ECE and MCE) without harming accuracy. Our findings suggest that calibration is a distributed phenomenon, shaped throughout the network forward pass, not just in its final projection, providing new insights into how confidence-regulating mechanisms operate within LLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 校准能力 网络深度 信心调节
相关文章