cs.AI updates on arXiv.org 11月05日 13:21
LLMs角色一致性评估与改进框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一个统一框架评估和改进大型语言模型(LLMs)生成对话中的角色一致性,定义三种自动指标,通过多轮强化学习微调LLMs,显著降低不一致性,提高模拟用户的连贯性和真实性。

arXiv:2511.00222v1 Announce Type: cross Abstract: Large Language Models (LLMs) are increasingly used to simulate human users in interactive settings such as therapy, education, and social role-play. While these simulations enable scalable training and evaluation of AI agents, off-the-shelf LLMs often drift from their assigned personas, contradict earlier statements, or abandon role-appropriate behavior. We introduce a unified framework for evaluating and improving persona consistency in LLM-generated dialogue. We define three automatic metrics: prompt-to-line consistency, line-to-line consistency, and Q&A consistency, that capture different types of persona drift and validate each against human annotations. Using these metrics as reward signals, we apply multi-turn reinforcement learning to fine-tune LLMs for three user roles: a patient, a student, and a social chat partner. Our method reduces inconsistency by over 55%, resulting in more coherent and faithful simulated users.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 角色一致性 对话生成 强化学习 人工智能
相关文章