cs.AI updates on arXiv.org 11月05日 13:20
随机森林增强框架:结合概率采样与模拟退火调优
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新的框架,通过集成概率特征采样和模拟退火超参数调优来增强随机森林分类器。该框架在预测准确性和泛化能力上取得显著进步,适用于解决多个领域如信用风险评估、物联网异常检测、早期医疗诊断和高维生物数据分析中的分类挑战。

arXiv:2511.00133v1 Announce Type: cross Abstract: This paper introduces a novel framework for enhancing Random Forest classifiers by integrating probabilistic feature sampling and hyperparameter tuning via Simulated Annealing. The proposed framework exhibits substantial advancements in predictive accuracy and generalization, adeptly tackling the multifaceted challenges of robust classification across diverse domains, including credit risk evaluation, anomaly detection in IoT ecosystems, early-stage medical diagnostics, and high-dimensional biological data analysis. To overcome the limitations of conventional Random Forests, we present an approach that places stronger emphasis on capturing the most relevant signals from data while enabling adaptive hyperparameter configuration. The model is guided towards features that contribute more meaningfully to classification and optimizing this with dynamic parameter tuning. The results demonstrate consistent accuracy improvements and meaningful insights into feature relevance, showcasing the efficacy of combining importance aware sampling and metaheuristic optimization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

随机森林 概率特征采样 模拟退火 超参数调优 分类器增强
相关文章