cs.AI updates on arXiv.org 前天 13:20
动态多专家门控框架提升轨迹预测可靠性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种动态多专家门控框架,通过在物理信息LSTM、Transformer和微调GameFormer中自适应选择最可靠的轨迹预测器,有效提升复杂场景下的轨迹预测可靠性。

arXiv:2511.00126v1 Announce Type: cross Abstract: Recent deep trajectory predictors (e.g., Jiang et al., 2023; Zhou et al., 2022) have achieved strong average accuracy but remain unreliable in complex long-tail driving scenarios. These limitations reveal the weakness of the prevailing "one-model-fits-all" paradigm, particularly in safety-critical urban contexts where simpler physics-based models can occasionally outperform advanced networks (Kalman, 1960). To bridge this gap, we propose a dynamic multi-expert gating framework that adaptively selects the most reliable trajectory predictor among a physics-informed LSTM, a Transformer, and a fine-tuned GameFormer on a per-sample basis. Our method leverages internal model signals (meta-features) such as stability and uncertainty (Gal and Ghahramani, 2016), which we demonstrate to be substantially more informative than geometric scene descriptors. To the best of our knowledge, this is the first work to formulate trajectory expert selection as a pairwise-ranking problem over internal model signals (Burges et al., 2005), directly optimizing decision quality without requiring post-hoc calibration. Evaluated on the nuPlan-mini dataset (Caesar et al., 2021) with 1,287 samples, our LLM-enhanced tri-expert gate achieves a Final Displacement Error (FDE) of 2.567 m, representing a 9.5 percent reduction over GameFormer (2.835 m), and realizes 57.8 percent of the oracle performance bound. In open-loop simulations, after trajectory horizon alignment, the same configuration reduces FDE on left-turn scenarios by approximately 10 percent, demonstrating consistent improvements across both offline validation and open-loop evaluation. These results indicate that adaptive hybrid systems enhance trajectory reliability in safety-critical autonomous driving, providing a practical pathway beyond static single-model paradigms.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

轨迹预测 多专家门控 自动驾驶 安全关键
相关文章