cs.AI updates on arXiv.org 5小时前
基于交叉涨落的扩散模型采样动力学分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文利用统计物理中的中心矩统计量——交叉涨落,分析了基于得分扩散模型的采样动力学。研究发现,从无偏各向同性正态分布开始,样本经历尖锐的离散转变,最终形成所需分布的独立事件,并逐渐揭示更精细的结构。这一过程可逆,转变也可逆向发生,中间状态逐渐合并,追踪回初始分布。检测这些转变可提高采样效率,加速类条件生成和罕见类生成,改善图像分类和风格迁移等零样本任务,无需昂贵的网格搜索或重新训练。

arXiv:2511.00124v1 Announce Type: cross Abstract: We analyse how the sampling dynamics of distributions evolve in score-based diffusion models using cross-fluctuations, a centered-moment statistic from statistical physics. Specifically, we show that starting from an unbiased isotropic normal distribution, samples undergo sharp, discrete transitions, eventually forming distinct events of a desired distribution while progressively revealing finer structure. As this process is reversible, these transitions also occur in reverse, where intermediate states progressively merge, tracing a path back to the initial distribution. We demonstrate that these transitions can be detected as discontinuities in $n^{\text{th}}$-order cross-fluctuations. For variance-preserving SDEs, we derive a closed-form for these cross-fluctuations that is efficiently computable for the reverse trajectory. We find that detecting these transitions directly boosts sampling efficiency, accelerates class-conditional and rare-class generation, and improves two zero-shot tasks--image classification and style transfer--without expensive grid search or retraining. We also show that this viewpoint unifies classical coupling and mixing from finite Markov chains with continuous dynamics while extending to stochastic SDEs and non Markovian samplers. Our framework therefore bridges discrete Markov chain theory, phase analysis, and modern generative modeling.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

扩散模型 采样动力学 交叉涨落 图像分类 风格迁移
相关文章